Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(4): 1458-1470, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38483275

RESUMO

Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Polissacarídeos/química
2.
Methods Mol Biol ; 2762: 281-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315372

RESUMO

Glycosylation refers to the biological processes that covalently attach carbohydrates to the peptide backbone after the synthesis of proteins. As one of the most common post-translational modifications (PTMs), glycosylation can greatly affect proteins' features and functions. Moreover, aberrant glycosylation has been linked to various diseases. There are two major types of glycosylation, known as N-linked and O-linked glycosylation. Here, we focus on O-linked glycosylation and thoroughly describe a bottom-up strategy to perform O-linked glycoproteomics studies. The experimental section involves enzymatic digestions using trypsin and O-glycoprotease at 37 °C. The prepared samples containing O-glycopeptides are analyzed using nanoHPLC coupled with tandem mass spectrometry (MS) for accurate identification and quantification.


Assuntos
Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Glicosilação , Peptídeos/metabolismo , Glicopeptídeos/química
3.
Biomolecules ; 13(11)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-38002271

RESUMO

Glycoproteomic analysis is always challenging because of low abundance and complex site-specific heterogeneity. Glycoproteins are involved in various biological processes such as cell signaling, adhesion, and cell-cell communication and may serve as potential biomarkers when analyzing different diseases. Here, we investigate glycoproteins in narcolepsy type 1 (NT1) disease, a form of narcolepsy characterized by cataplexy-the sudden onset of muscle paralysis that is typically triggered by intense emotions. In this study, 27 human blood serum samples were analyzed, 16 from NT1 patients and 11 from healthy individuals serving as controls. We quantified hydrophilic interaction liquid chromatography (HILIC)-enriched glycopeptides from low-abundance serum samples of controls and NT1 patients via LC-MS/MS. Twenty-eight unique N-glycopeptides showed significant changes between the two studied groups. The sialylated N-glycopeptide structures LPTQNITFQTESSVAEQEAEFQSPK HexNAc6, Hex3, Neu5Ac2 (derived from the ITIH4 protein) and the structure IVLDPSGSMNIYLVLDGSDSIGASNFTGAK HexNAc5, Hex4, Fuc1 (derived from the CFB protein), with p values of 0.008 and 0.01, respectively, were elevated in NT1 samples compared with controls. In addition, the N-glycopeptide protein sources Ceruloplasmin, Complement factor B, and ITH4 were observed to play an important role in the complement activation and acute-phase response signaling pathways. This may explain the possible association between the biomarkers and pathophysiological effects.


Assuntos
Glicopeptídeos , Narcolepsia , Humanos , Cromatografia Líquida/métodos , Glicopeptídeos/química , Glicosilação , Soro/química , Espectrometria de Massas em Tandem/métodos , Glicoproteínas/química , Interações Hidrofóbicas e Hidrofílicas , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...